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ScienceDirect
Every day we are faced with a huge amount of new information.

We can’t learn about everything, we have to select what to learn

about. We have many systems that contribute to learning in

different ways, allowing us to select the most relevant

information to learn about. This review will focus on one such

system, comprising the basolateral amygdala and lateral

hypothalamus, which we argue works to favor learning about

information most relevant to current goals. Specifically, we will

discuss work that has revealed the role of the basolateral

amygdala in encoding the sensory-specific aspects of

rewarding information. Then, we discuss new data implicating

lateral hypothalamus in biasing learning towards reward-

predictive cues, and away from information distal to rewards.

Finally, we offer a framework of how these regions

communicate to relay this information to the midbrain

dopamine system, allowing them to bias ongoing learning

towards the best predictors of motivationally relevant

information.
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Introduction
Learning about predictors of motivationally significant

outcomes, like food or pain, is essential for approaching

rewards and avoiding punishments. Some of these pre-

dictors are proximal to outcomes, like the taste of ice

cream from your neighborhood’s ice-cream truck. Others

are more distal from outcomes, like hearing the nostalgic

tune of the ice-cream truck play throughout your neigh-

borhood. We must balance learning about proximal and

distal outcomes, and devote learning to predictors that
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best facilitate arrival at our eventual goal. Dysfunction in

the balance between learning about proximal and distal

predictors of outcomes plays an important role in psycho-

logical disorders like anxiety, addiction, and schizophre-

nia [1,2].

Two regions of the brain that are important for learning

about motivationally significant outcomes are the lateral

hypothalamus (LH) and the basolateral amygdala (BLA).

Both structures encode information that is proximal to

food (or pain, under some conditions [10��]), which facil-

itates the ability to respond appropriately to these pre-

dictors in the future [3–8,9��,10��]. Yet when it comes to

learning about the distal predictors of food outcomes, the

function of these regions diverges. Specifically, the BLA

will only be involved in encoding information about distal

predictors if these predictors have already been estab-

lished as related to something motivationally significant

[3,8,9]. For example, the BLA will encode the ice-cream

truck tune, but only if you know the truck is likely to sell

ice cream. On the other hand, the LH biases learning

toward proximal predictors and actively opposes learning

about distal predictors, even if those distal cues are

related to something motivationally significant. Thus,

in contrast to the BLA, the LH will always want to

prevent you from encoding the sound of the ice-cream

truck tune, even if you’ve bought ice cream from these

trucks a hundred times before. Here, we review the

function of these regions in the context of Pavlovian

conditioning and discuss potential models of how these

regions may interact to facilitate the balance of proximal

and distal learning about motivationally significant

outcomes.

Basolateral amygdala function
Much of the early research on the BLA has centered

around the role of this region in fear. The BLA has been

shown to be critical for both the acquisition and expres-

sion of conditioned fear in rodents, humans, and primates

[11,12,13�]. In a simple fear conditioning task, where

subjects are learning to associate a cue with something

aversive like a mild foot shock, inhibiting BLA function

reduces the subsequent ability of the shock-predictive

cue to elicit fear [14–16,17�]. Similarly, leaving BLA

function intact during learning, but disrupting its function

in a subsequent test of fear to the shock-paired cue, also

reduces fear [14–16,18]. These results demonstrate that

the BLA is necessary for developing and storing fear

memories that facilitate appropriate behavior in the pres-

ence of predictors of aversive outcomes.
www.sciencedirect.com
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While most of the work examining the role of the BLA in

learning focuses on predictors of aversive outcomes, the

BLA is also critical for learning about the predictors of

rewards [3–7,19,20]. However, its contribution to reward

learning is more nuanced, such that inhibiting BLA

function does not abolish learning or responding to cues

that predict rewarding outcomes, like it does during fear

conditioning [19,20]. Instead, appetitive learning studies

have revealed that the BLA is important for encoding the

sensory-specific representation of the reward, demon-

strated by using Pavlovian-to-instrumental Transfer

(PIT) and devaluation studies [3–6]. For example, during

PIT, subjects first learn that two cues (e.g. light or tone)

lead to two different rewards (e.g. pellets or sucrose).

Then, subjects learn to make two actions (e.g. lever press

or chain pull) to receive the two outcomes. Finally,

subjects are given a test where the cues are played and

either action can be made (in the absence of reward).

Encoding of the sensory-specific representation of these

rewards is revealed when subjects make the action that

leads to the reward congruent with that predicted by the

current cue being played (e.g. sucrose action made during

sucrose cue). However, lesions of the BLA impair the

specific PIT effect, characterized by indistinguishable

action selections in the presence of either cue, despite

the ability of the cues to generally invigorate motivated

responding remaining intact [6]. These findings demon-

strate that the BLA is necessary for encoding the rela-

tionship between cues and a sensory-specific representa-

tion of rewards [4–6].

Interestingly, this role of the BLA in learning about cues

that predict either rewarding or aversive outcomes can

extend to learning about information that is distal to these

outcomes. However, this only occurs if the information

being learned carries motivational significance at the time

these relationships are encoded. For example, the BLA is

not involved in sensory preconditioning [8,9,21,22]. In

this procedure, two neutral cues are first paired together,

where neither carry any motivational significance (e.g. A

! B). The next day, cue B is paired with a motivationally

significant outcome (e.g. B ! shock), endowing this cue

with motivational significance. After this training, when

cue A is presented alone, rats will freeze because it leads

to B, which they learned predicts shock. Inhibition of

BLA function during initial A ! B learning has no impact

on the later ability of A to elicit freezing after B is paired

with shock, demonstrating that the BLA is not involved in

learning the initial A ! B association [8,9]. However, the

BLA can be recruited to learn about these same relation-

ships if rats have previously experienced shock in the

same context as where they will receive initial pairings of

the neutral cues (A ! B) [9], or if these A ! B pairings are

learned after B has been established as predictive of

shock (termed ‘second-order conditioning’) [3,8]. Under

these conditions, inactivating the BLA during A ! B

pairings reduces subsequent freezing to A [8]. This shows
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that the BLA can be engaged to learn about complex

sensory-specific associations that are distal from out-

comes, but only if that information is motivationally

significant at the time of encoding.

The importance of the BLA in prioritizing encoding of

information that is motivationally significant is also

indexed by the pattern of cue-evoked firing seen in

electrophysiological studies. In one study, rats were

trained to discriminate responding to two different odors

predictive of either a rewarding sucrose solution or an

aversive quinine solution [23]. Neurons in the BLA were

recorded in these rats during a reversal of these contin-

gencies. This revealed that neuronal populations in the

BLA switch their firing preference to follow their pre-

ferred outcome. That is, after a reversal, the same neuron

that was once firing to an odor predictive of sucrose will

now preferentially fire for that opposite odor that is now

predictive of sucrose. Thus, these neurons change selec-

tivity to follow the reward and not the odor. Similarly, in

another study, BLA neurons increased firing rate with an

unexpected change in reward magnitude or delay, exhi-

biting a short burst of increased activity whether these

changes meant more or less reward, or delivered over a

shorter or longer timescale [24]. This is reminiscent of an

unsigned attentional signal [24], strengthening the idea

that BLA is concerned with the specific outcomes pre-

dicted by environmental stimuli and their motivational

significance [24,25]. Altogether, these studies provide

evidence to support the BLA as an associative structure

important for learning about motivationally significant

events by encoding sensory-specific information about

these events, including their current predictive status.

Lateral hypothalamus function
While the BLA has been known to be critical for associa-

tive learning for some time, it is only recently that the LH

has been conclusively shown to be necessary for rein-

forcement learning [10��,26–28,29�,30,31]. Before this,

the function of the LH was relatively restricted to pro-

moting approach to food and its consumption (but see:

Castro et al. [32]; Petrovich [33��]). For example, early

studies demonstrated that lesions made in the LH would

reduce spontaneous feeding behavior, suggesting the

necessity for this region for food consumption and the

prevention of starvation [34]. Similarly, electrical stimu-

lation of the LH was shown to increase food intake in

sated rats [34–36]. In fact, the LH itself supports intra-

cranial self-stimulation (ICSS) [35–38]. Specifically, sub-

jects will perform an action to receive electrical or optical

stimulation of LH, argued to reflect a role for this region

in processing primary rewards, like food [35–38]. Further,

neural recordings in LH show that it responds to rewards,

such as glucose and ICSS [39,40�,41]. Together, these

findings have demonstrated the importance of the LH in

processing primary rewards.
Current Opinion in Behavioral Sciences 2021, 41:92–97
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GABAergic neurons in the LH have become a heavily

researched population in LH in recent years. This is

partly owed to recent findings that stimulation of

GABAergic neurons alone produces the effects on feed-

ing found with LH stimulation prior [42–45]. Our lab

recently investigated whether the GABAergic population

might also contribute to learning about cues that predict

food, over and above producing an innate drive to feed

[26]. Specifically, we trained rats that a cue led to food,

and optogenetically inhibited LH GABAergic neurons

during the cue and not food delivery. This allowed us to

isolate a role for LH in learning separate from food

consumption. We found that rats showed a significant

reduction in the appetitive response to approach the food

port when LH GABA neuronal functioning was inhibited

during cue presentation. This was despite intact food

consumption when the food was delivered shortly after

the cue. This demonstrated that all rats were capable of

using other sensory predictors (e.g. the sight, smell, and

sound of food), to go and retrieve the food, even if they

were not using the food-predictive cue to do so. Impor-

tantly, this deficit was maintained when rats were pre-

sented with the food-paired cue after learning, when the

LH GABAergic neurons were no longer inhibited. This

confirmed an effect on learning and not a temporary effect

on attention or motivation when the neurons were inhib-

ited. Further, in a separate group of rats, inhibition of LH

GABA neuronal activity during the cue, after learning had

taken place, also reduced cue-evoked responding. These

findings suggest that LH GABAergic neurons facilitate

learning and responding towards food-predictive cues,

revealing a new role for the LH in learning about pre-

dictors of motivationally significant outcomes beyond the

innate motivation to approach and consume food.

More recently, we have implicated LH GABAergic neu-

rons as playing a role in opposing learning about cues that

are not directly relevant to predicting food [10��]. For

example, when GABAergic neurons in LH were opto-

genetically inhibited during cue–cue learning (e.g. A !
B) in a sensory preconditioning task, subjects showed

elevated responding toward the preconditioned cue, A,

after it’s associate B was paired with food [10��]. This

demonstrated that inhibition of LH GABA neuronal

activity during A ! B learning increased the association

between the neutral cues, suggesting the general function

of these neurons is to oppose learning of these associa-

tions. LH could oppose the initial A ! B learning for two

reasons: (1) because the cues did not hold any motiva-

tional significance at the time of learning, or (2) because

the LH opposes any learning that is not directly relevant

to predicting food during a session. To test this, another

group of rats were trained first that B was a predictor of

food, and then to associate A with B together, in a second-

order conditioning design [10��]. Under these circum-

stances, inhibition of LH GABA neurons during the A

! B pairings still enhanced subsequent appetitive
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responding towards A. This confirmed that LH GABAer-

gic neurons oppose learning about cues that are distal to

reward (e.g. those that do not predict rewards within a

session), rather than simply those that do not possess any

motivational significance at the time of learning (i.e.

neutral cues). Taken together, these findings demon-

strate that the LH is important for learning about cues

that are proximal predictors of reward, while opposing

learning for associations that are distal to rewards.

An interesting direction for future research would be to

determine how this type of learning is encoded in the

LH. For example, would the same neurons that facilitate

feeding and ICSS also be those encoding relationships

between cues and rewards (and their direct relevance for

predicting reward), or would different neuronal populations

encode distinct aspects of this process? While we know that

LH GABAergic neurons are necessary for both feeding and

cue-reward learning [10��,26,42–45], there are many differ-

ent subtypes of GABAergic neurons in the LH [46]. Further,

we also know that non-GABAergic LH neurons expressing

orexin (ORX) play a role in reward learning [47], which is yet

to be dissociated from the role that GABAergic neurons play

in this process. Recent work has shown that it is likely that

different aspects of learning could be encoded in different

populations of neurons within the LH [43]. Specifically,

Nieh et al. [43] showed that different neuronal populations

(GABAergic or otherwise) in the LH exhibit distinct con-

nections with the midbrain; one group of LH neurons appear

to selectively project to the ventral tegmental area (VTA),

while another receive inputs from the VTA. This suggests

that these populations that have distinct connection profiles

could be encoding different aspects of behavior. Given the

development of modern-day neuroscience techniques, dis-

secting the exact cellular architecture and specific mecha-

nisms within the LH itself to investigate these functions

further is now certainly on the horizon.

BLA-LH circuitry
In summary, the BLA and LH are critical for learning

about proximal predictors of outcomes, but their function

diverges when considering their contribution to the

encoding of distal predictors. Specifically, BLA contrib-

utes to cue–cue associations (e.g. A ! B), but only if one

of these cues (or the context they’re trained in) is already

motivationally significant [3,8,9]. On the other hand, LH

opposes cue–cue relationships, regardless of their moti-

vational significance of prior experience, diverting learn-

ing away from cues that are distal to rewards [10��]. Given

this, it becomes of interest to consider how these regions

might functionally interact.

Anatomical studies for this circuitry suggest that it is

likely the BLA relays information to the LH, as the

BLA sends excitatory projections to the LH, and the

LH is without reciprocal projections to the BLA [48].

Indeed, research investigating information flow from the
www.sciencedirect.com
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Figure 1
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Schematic of a proposed BLA-LH framework.

Excitatory projections extending from the BLA provide a salience

signal to the LH that contains sensory-specific information and

expected outcomes that are motivationally significant. Upon receipt,

the LH assesses whether this outcome is directly relevant to current

motivational state and determines the predictor’s proximity to the

outcome. LH then relays this information as an expectation signal to

the VTA, influencing resulting prediction errors relayed from this region

throughout the brain to regulate ongoing learning.
BLA to the LH while rats respond to food-predictive cues

supports an idea that BLA provides early information

about the cue-predicted outcome to LH. For example,

after learning a cue predicts food, LH-projecting BLA

neurons show increased Fos expression in the presence of

that cue (and not in response to other aspects of the

experiment) [28]. Interestingly, BLA activity appears to

increase earlier in learning than LH. Specifically, BLA

activity, as measured by cFos, is evident after just one day

of cue-reward training [49]. However, this is not seen in

LH. Instead, LH populations appear to become recruited

towards the later sessions of learning [50].

One interpretation of these data is that the recruitment of

the LH for learning after initial sessions suggests LH may

process cue information from the BLA to determine the

relevance of its contingency to current motivational state

(e.g. food to a hungry rat). That is, the LH is not involved

in learning about the cue-food contingency per se, but

rather, evaluates the relevance of this information to

current goals, to influence the degree of resources that

will be devoted to directing learning or responding to it.

This is supported by electrophysiological recordings that

show phasic firing of BLA neurons at the onset of an

appetitive or aversive cue [51–53], whereas LH neural

activity is long and sustained to reward-predicting cues

[39,40�,41,54]. Collectively, this is consistent with a test-

able hypothesis that transients from the BLA may be

acting as a salience signal, carrying information about the

cue-predicted outcome, to alert the LH (and elsewhere)
www.sciencedirect.com 
of what is about to happen. We would postulate that LH

then ultimately assesses the direct relevance of these cues

in predicting something the agent needs right now, to bias

learning and responding towards those most proximal to

motivationally significant outcomes (Figure 1).

After receiving information from BLA, LH GABA neurons

can modulate ongoing learning and performance via dense

projections to the VTA [26,43–45]. For example, we have

found causal evidence that LH GABAergic neurons relay

an expectation signal to VTA to modulate ongoing learning

and prediction errors [26]. That is, when a reward-predic-

tive cue is presented, LH GABA relays the expectation for

reward to the VTA, preventing a prediction error from firing

when the now expected reward is delivered. This type of

mechanism does notappear to be supported by thecircuitry

between BLA and the VTA [55,56]. Specifically, BLA does

not appear to have direct projections to VTA [55,56],

consistent with an idea that BLA relays cue information

to the LH, which then allows the LH to influence ongoing

learning processes by virtue of signaling throughout the

VTA (Figure 1). We would argue that this influence that

LH has over VTA allows it to direct learning and respond-

ing towards proximal predictors, and away from distal

predictors of rewards, providing a unique input to midbrain

dopamine circuit, which data has shown is involved in

increasingly complex and diverse forms of reinforcement

learning [57,58,59�,60].

Conclusion
Here we have put forward a testable theory of how LH

and BLA work together to regulate learning and behavior

towards cues most relevant to predicting important out-

comes. The brave new world of genetic neuroscience

offers new methods to investigate the intricacies of this

cognitive process that can be applied to study this circuit

in the future [61–63]. For example, we can now target the

specific glutamatergic projections from the BLA to the

LH using optogenetics and inhibit these synapses with

temporal precision during Pavlovian learning. Similarly,

we could record the terminals that arise from the BLA in

LH to examine their contribution to the learning process.

This would allow us to unpack the specifics of how this

system functions to influence learning and behavior.
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orexin signaling to mPFC also reduced the cue-potentiated feeding
effect. This suggested that LH relays information about food-paired cues
to mPFC to modulate appropriate responding behavior, arguing against a
role for LH as a passive switch to produce feeding behaviors.
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