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The prediction-error hypothesis of schizophrenia: new data
point to circuit-specific changes in dopamine activity
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Schizophrenia is a severe psychiatric disorder affecting 21 million people worldwide. People with schizophrenia suffer from
symptoms including psychosis and delusions, apathy, anhedonia, and cognitive deficits. Strikingly, schizophrenia is characterised by
a learning paradox involving difficulties learning from rewarding events, whilst simultaneously ‘overlearning’ about irrelevant or
neutral information. While dysfunction in dopaminergic signalling has long been linked to the pathophysiology of schizophrenia, a
cohesive framework that accounts for this learning paradox remains elusive. Recently, there has been an explosion of new research
investigating how dopamine contributes to reinforcement learning, which illustrates that midbrain dopamine contributes in
complex ways to reinforcement learning, not previously envisioned. This new data brings new possibilities for how dopamine
signalling contributes to the symptomatology of schizophrenia. Building on recent work, we present a new neural framework for
how we might envision specific dopamine circuits contributing to this learning paradox in schizophrenia in the context of models
of reinforcement learning. Further, we discuss avenues of preclinical research with the use of cutting-edge neuroscience techniques
where aspects of this model may be tested. Ultimately, it is hoped that this review will spur to action more research utilising specific
reinforcement learning paradigms in preclinical models of schizophrenia, to reconcile seemingly disparate symptomatology and
develop more efficient therapeutics.

Neuropsychopharmacology; https://doi.org/10.1038/s41386-021-01188-y

INTRODUCTION
Moving towards a cohesive understanding of how differences
in dopamine signalling in discrete circuits could contribute to
the paradoxical symptoms of schizophrenia
Schizophrenia is a severe debilitating psychiatric disorder that
affects 21 million people, with a prevalence of around 1%
worldwide [1, 2]. People with schizophrenia experience an
unemployment rate of ~80–90% [3, 4], and a 15–20 year shorter
life expectancy compared to the general population [2, 5–7]. The
disorder is characterised by a set of core features, including
hallucinations and delusions (i.e., positive symptoms), apathy,
anhedonia, avolition (i.e., negative symptoms), and cognitive
deficits [8–10]. Reinforcement learning deficits in particular are
strongly linked to the development of both positive and negative
symptoms, and are often present in first episode and frank
psychosis, and in populations at risk of developing psychosis [11–
15]. Aberrant dopaminergic signalling has long been linked to the
pathophysiology of schizophrenia [16–21]. Indeed, the primary
mechanism of action of current atypical antipsychotics is
contingent upon reducing activity at the D2 receptor [22]. Whilst
these antipsychotics are somewhat effective in the treatment of
positive symptoms of schizophrenia, they are accompanied by
intolerable side effects [23], and cognitive impairments are often
unaffected or worsened [24]. Therefore, there is an urgent need to
develop our understanding of cognitive dysfunction in schizo-
phrenia to guide alternative therapeutics [24].

The fact that current antipsychotic treatments targeting
dopamine activity alleviate positive symptoms, but do not
generally impact significantly on negative symptoms or cognitive
impairments, illustrates the difficulties that we face in trying to
develop a cohesive understanding of the neural basis of
schizophrenia. The complexity of this disorder is also reflected in
the learning paradox that we see in people with schizophrenia.
Specifically, patients show an increase in learning about irrelevant
information (correlated with positive symptoms), and a decrease
in learning about reward-predictive information (correlated with
negative/cognitive symptoms; [25–30]). While there has been
recent interest in thinking about how nuanced changes in
subcortical dopamine might contribute to schizophrenia sympto-
matology [27, 31], it is generally difficult to explain this
dissociation within existing models of reinforcement learning. As
a result, the field still lacks a coherent framework that can help
account for this learning paradox seen in schizophrenia.
Recent research emerging from basic neuroscience may be able

to help us to refine models of how changes in dopamine circuits
could produce the learning paradox seen in schizophrenia.
Specifically, this research has demonstrated that we can no
longer explain phasic dopamine signalling as a homogenous
signal that broadcasts salience or value of a current event [32–43].
It is now believed that dopamine signalling can function in
qualitatively different ways in different neural circuits to produce
learning in many different situations [35, 44], not previously
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envisioned by traditional theories of dopamine function [45–48].
From this emerges the exciting possibility that a change in the
balance of inputs and outputs to the dopamine system could
produce the paradoxical changes in learning seen in schizo-
phrenia, without the need to appeal to other neurotransmitter
systems or dissociative effects in subcortical and prefrontal areas.
Accordingly, in this review, we make the case for how we might
envision specific changes in particular dopamine circuits as
contributing to the reinforcement-learning paradox seen in
schizophrenia, building on recent works that have begun to
conceptualise a more nuanced role for dopamine in schizophrenia
[27, 49]. As such, this is a “call to action” to utilise cutting-edge
basic neuroscience techniques in the context of reinforcement
learning to investigate circuit-defined neural changes in preclinical
models of schizophrenia. It is our hope that this will provide a new
direction for developing therapeutics that target particular
dopaminergic circuits to simultaneously alleviate positive and
negative symptoms and cognitive deficits associated with
schizophrenia.

THE REINFORCEMENT-LEARNING DEFICITS AND THEIR
NEURAL CORRELATES
The first studies that revealed deficits in reinforcement learning in
people with schizophrenia demonstrated enhancements in
learning about irrelevant stimuli, or neutral information, which
healthy controls usually ignore. This is manifest by failures of
latent inhibition, overshadowing, blocking, and learned irrele-
vance tasks. Indeed, these deficits have become characteristic of
schizophrenia [50, 51]. These tasks all have unique associative
bases [52, 53], and likely also involve attentional mechanisms
[54–56]. However, what they have in common is that they all
require the ability to filter out irrelevant information. For example,
latent inhibition is the phenomenon whereby humans and other
animals take longer to acquire a stimulus-reward association when
the stimulus has previously been established as irrelevant by
repeatedly presenting it alone (i.e., pre-exposure), which is
thought to result in the development of a stimulus-no reward
association [52, 57–60]. People with schizophrenia show faster
rates of learning about pre-exposed stimuli and their associations
with reward [61–68]. Importantly, clinical studies have shown that
latent inhibition is also disrupted in otherwise healthy volunteers
who score highly on measures of psychoticism and schizotypy
[61, 63–66, 69], whilst medicated patients with schizophrenia
show intact latent inhibition, indicating that this disruption is
related to positive symptoms [62, 67, 70]. Moreover, the
administration of haloperidol, a dopamine antagonist that treats
psychotic symptoms in schizophrenia, has been shown to
enhance latent inhibition in healthy participants [68].
Similarly, people with schizophrenia fail to show the blocking

effect, a fundamental associative paradigm that involves both
associative and attentional components [53–55, 71, 72]. Blocking
involves first teaching subjects that a cue leads to reinforcement.
Then, this predictive cue is paired with another, novel cue and the
same reward. Here, blocking is evident when subjects do not learn
about the novel cue, as it does not predict anything over and
above the predictive cue and is deemed irrelevant [53, 54].
However, people experiencing acute, but not chronic, schizo-
phrenia display deficits in blocking, characterised by enhance-
ments in learning about the novel cue, during visual
discrimination and spatial navigation tasks [73–80]. It was initially
unclear whether the blocking deficit seen in patients was related
to the negative or positive symptoms of the disorder. This was
likely because task-related differences can change the dominant
learning mechanism at play during blocking, resulting in either
more reliance on a reinforcement learning [53], or on an
attentional process [54]. Indeed, when the blocking task is
accompanied by a general deficit in reinforcement learning in

subjects with schizophrenia, poor blocking is associated with
negative symptoms of the disorder [79, 80]. However, when the
deficits in reinforcement learning are not present (due to changes
in task structure or amounts of training), blocking is still impaired
in people with schizophrenia, and is correlated predominantly
associated with positive symptoms of the disorder and an inability
modulate attention to the novel, blocked cue [74, 81]. This
differentiates the blocking deficit in people with schizophrenia
from that seen in latent inhibition, where a lack of latent inhibition
in patients is attributed to disruptions in an associative process
[52]. This makes sense as blocking and latent inhibition paradigms
are dependent on different neural circuits (discussed below).
These data demonstrate that the enhancement of learning about
irrelevant cues in schizophrenia (including blocking and latent
inhibition) correlates with positive symptoms of the disorder
[81, 82], where it is thought that delusions and hallucinations that
characterise positive symptoms arise as patients try to make sense
of these aberrant learning experiences [83, 84].
On the other hand, people with schizophrenia display a

consistent reduction in learning about cues that are predictive
of reinforcement, which is thought to be related to the negative/
cognitive symptoms of schizophrenia. Specifically, studies have
reported relatively intact learning in people with schizophrenia
when one cue-outcome contingency is available [85–96]. How-
ever, deficits are evident when complexities are introduced.
For example, schizophrenia patients display robust deficits in
reinforcement learning during probabilistic selection tasks
[14, 29, 97–100], designed to assess a participant’s ability to learn
from positive and negative feedback with changing probabilities
of reinforcement [29, 101]. Even when patients are given an excess
number of trials to learn probabilistic reinforcement contingen-
cies, they still exhibit learning deficits, suggesting that deficiencies
are the result of impaired learning from more complex rewarding
outcomes, and not simply the result of slower stimulus-response
learning, or basic working memory deficits that are frequently
found in schizophrenia [97, 98]. With regards to reward-paired
cues, these findings reveal that people with schizophrenia fail to
make distinctions between events that are motivationally
significant (e.g., rewarding), and display decreased updating of
stimulus-outcome associations in response to changing reinforce-
ment contingencies [83, 102, 103].
Collectively, these findings demonstrate a paradoxical deficit in

schizophrenia; increases in learning about irrelevant stimuli, and a
concomitant decrease in learning about reward-predictive infor-
mation. Typically, these deficits are explained by changes in
distinct neural circuits. For example, increases in learning about
irrelevant stimuli are argued to result from increases in subcortical
dopamine activity, supported by findings of elevated dopamine
synthesis capacity in striatal regions specific to D2/3 receptors
[104], which correlates with positive symptoms [31, 105]. On the
other hand, reductions in learning about reward-predictive stimuli
are often attributed to hypo-frontality, contributed to by a
reduction in D1 receptor density, linked to negative symptoms
and cognitive deficits [102, 106–108]. Studies using functional
magnetic resonance imaging (fMRI) during reinforcement learning
have corroborated this physiological evidence in some respects.
For example, there is some evidence for hypo-frontality during
learning in patients with schizophrenia [11, 82, 99, 109–111],
though this does not appear to be the case for all frontal regions;
while activity in some frontal regions is decreased, other show an
increase in activity [112]. Further, fMRI data reveals that ventral
striatal activity during reinforcement-learning tasks does not
suggest an increase in dopamine function per se [82, 113]. Striatal
activity is increased to irrelevant or neutral information and
decreased to reward-predictive information [82]. Whilst this makes
sense from a functional perspective of the schizophrenia learning
paradox, it is difficult to reconcile a subcortical notion of
hyperdopaminergic signalling, which would predict increased
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learning to both neutral and reward-paired cues. In the following
sections, we will make the case that both positive and negative
symptoms, and their corresponding deficits in reinforcement
learning, instead fit within a cohesive model of dysfunction within
specific dopaminergic circuits.

DOPAMINE: A COMPLEX SYSTEM SUBSERVING MANY
DIFFERENT FORMS OF REINFORCEMENT LEARNING
To drive learning, dopamine neurons in the ventral tegmental area
(VTA) exhibit a phasic error signal when an unexpected event has
occurred [46, 114–116]. That is, dopamine neurons exhibit a signal
that reflects the difference between what you thought was going
to happen, and what happened in reality [46, 117]. This effectively
instructs the brain to learn and update current expectations.
Traditionally, this signal was only thought to contribute to what is
referred to in the field as “model-free” learning [46]. This means
that dopamine errors only instruct learning about something that
has value, like food or money, allowing that numerical or scalar
value to backpropagate to an antecedent cue [46]. However,
recent studies have shown that this dopamine error acts more like
a teaching signal to instruct humans and other animals to
associate events together (e.g., stimulus-reward or stimulus-
stimulus associations), regardless of whether either of those
events contain something valuable or rewarding, and without
endowing those events with value [33–35, 39–42, 118]. Further,
dopamine errors in both humans and rodents contain information
about predicted rewards [42], suggesting this signal serves to
instruct neural regions on what to learn about, as well as when to
learn [35]. This demonstrates that the dopamine prediction error
does not act as a homogenous signal that broadcasts the value or
salience of an event (or even allocations of lasting attention to a
stimulus [43]), but as a teaching signal that is received through-
out the brain to drive learnt associations that two constructs in the
world are related (Fig. 1).

The evidence in favour of phasic dopamine acting as an
instructive teaching signal to stamp in complex associations
between events or actions are two-fold. The first comes from
findings using optogenetic manipulation of VTA dopamine
neurons during reinforcement learning [34, 39, 40]. Such studies
have shown that stimulation of VTA dopamine neurons as a
prediction error can facilitate the development of associations
between predictive stimuli and their specific outcomes [34], and
between two neutral sensory stimuli [39, 40], without endowing
those antecedent stimuli with value [40]. Further, optogenetic
inhibition designed to silence the dopamine prediction error
across the transition between two neutral sensory stimuli,
reduces the association between such stimuli [39], suggesting a
physiological role for dopamine in the development of these
associations. The second line of evidence supporting a role for
dopamine in instructing learned associations comes from
recording of neural activity in VTA (or nucleus accumbens) of
mice, rats, and humans [42, 119, 120]. For instance, patterns of
firing across ensembles of midbrain dopamine neurons have
been shown to contain identity information of sensory prediction
errors [42]. In addition, exciting new research has reported the
presence of wave-like spatiotemporal dopamine dynamics in the
dorsal striatum, with the propagation of specific wave trajectories
(i.e., whether waves propagated from medial to lateral dorsal
striatum, or lateral to medial) dependant on the demands of a
learning task [119]. Both these findings suggest that spatiotem-
poral differences in dopamine signals may determine the timing
and strength of subcircuit teaching signals, which ultimately
defines what and when to learn. Consistent with this, regional
differences in phasic dopamine responses within the striatum
have been observed in response to novel cues [121], and
predicted and unpredicted rewards [122, 123], with often
opposing dopamine dynamics dependant on temporal aspects
of the task and subjective experience. Together, this research
demonstrates that the dopamine prediction error is not only

Fig. 1 Schematic summarising the major inputs and outputs connecting with the ventral tegmental area (VTA) dopamine neurons. In the
adult brain, dopaminergic neurons exist as a heterogenous group of cells localised predominately in the VTA and substantia nigra
[190, 204, 205]. From these areas, dopaminergic projections arising from the VTA extend to limbic (mesolimbic) and cortical (mesocortical)
regions, and from the substantia nigra to striatal (nigrostriatal), regions of the brain [206]. Given the overlap in common projections between
the dopaminergic mesolimbic and mesocortical pathways, these two systems are often referred to the mesocorticolimbic pathway collectively
[204] (Fig. 1). Mesolimbic and mesocortical pathways originating in the VTA send dopamine projections to the NAc and olfactory tubercle, and
to limbic regions including the amygdala, hippocampus and frontal cortices through the medial forebrain bundle [207–209]. The VTA also
sends and receives extensive reciprocal innervations from these same brain areas, as well as many others areas including the lateral
hypothalamus, lateral habenula, dorsal raphe nucleus and periaqueductal grey [207–209]. In essence, dopamine neurons in the midbrain are
densely connected with the rest of brain, where dopamine signalling is heavily influenced by descending projections, and in turn heavily
influences processing in these regions to drive associative learning [34, 35, 39, 40, 44, 47, 118, 146, 210, 211]. Abbreviations: Amyg Amygdala,
DRN Dorsal Raphe Nucleus, LDTg laterodorsal tegmentum nucleus, LH Lateral Hypothalamus, LHb Lateral Habenula, NAc Nucleus Accumbens,
mPFC Medial Prefrontal Cortex, PAG Periaqueductal Grey, RMTg Rostromedial Mesopontine Tegmental Nucleus, VP Ventral Pallidum, VTA
Ventral Tegmental Area.
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capable of facilitating the development of specific sensory
associations, but also that the information needed to learn these
associations is present in the dopamine error itself, before it is
received by the downstream circuit.
In this light, the paradoxical learning dichotomy seen in

schizophrenia cannot be explained by a general increase in
subcortical dopamine, nor an aberrant salience account, even
with dissociable changes in the prefrontal cortex. This is because
both these models would predict that deficits or enhancements
in learning should occur in the same direction. For example, if
people with schizophrenia exhibit a general increase in
subcortical dopamine, then one would expect that learning
about irrelevant or neutral cues, and reward-paired cues, would
both be enhanced (or deficient) when this signal is altered,
which is not observed in the clinical population. And in the
aberrant salience model, it is hypothesised that chaotic
dopamine firing leads to attribution of significance to stimuli
that would otherwise be considered irrelevant [124–126].
However, the same chaotic firing should also enhance other
aspects of learning at random, including learning from rewards.
Maia and Frank attempted to resolve this by developing a model
that described the subcortical dopaminergic changes occurring
in schizophrenia as similar to what occurs in amphetamine [27].
Specifically, that an increase in dopamine could be exhibited
spontaneously, enhancing sporadic associations that are linked
to positive symptoms, but blunted to relevant information,
which reduces learning about reward-paired cues. However, in
light of the new data implicating the dopamine prediction error
in learning about both neutral and reward-paired information,
we would take this one step further. Specifically, we would
argue that distinct dopamine circuits could encode learning
about neutral information, and others could encode reward-
related information, which is supported by emerging data
[127, 128], and that the balance of these circuits could be
changed in schizophrenia. Essentially, we believe it is likely that
different circuits and brain regions utilise the dopamine
prediction error as a qualitative teaching signal in specific ways,
and that circuit-specific dysfunction in schizophrenia alters how
the dopamine signal is received and interpreted, and ultimately
the content and direction of what is learned. This would also be
consistent with theories that propose more nuanced circuit-
specific changes in dopamine function in schizophrenia
could underpin the disparate symptomology observed in the
disorder [31].
We would advocate for taking an approach that makes

predictions from the reinforcement-learning deficits seen in
schizophrenia as to the nature of the circuit-specific changes in
dopamine circuits. The reasons for this are two-fold: (1) implicating
circuit-specific changes in patients is hard to do in clinical
research, owed to the lack of invasive techniques for probing
biological characteristics in humans, and (2) we could then make
predictions as to how manipulation of particular circuits in rodent
models of schizophrenia could restore normal learning processing,
with an ultimate goal of developing more targeted therapeutic
compounds for the treatment of the disorder in humans. With
that view in mind, we now know that dopamine signalling is
both necessary and sufficient to drive associative learning
between contiguous events, whether valuable or not
[34, 38, 40, 43, 44, 118]. So, a model of the learning paradox in
schizophrenia cannot assume a role for subcortical dopamine in
learning about reward-paired information and not neutral
information. Within this, we also know that different areas of the
brain that interact with the dopaminergic circuits regulate
learning about irrelevant, neutral, and rewarding information,
respectively. For example, the prelimbic cortex of the rat,
considered to be analogous to the dorsolateral prefrontal
cortex (DLPFC) [129–133], regulates the allocation of attention to
cues, facilitating performance in learned irrelevance tasks,

overshadowing, and blocking [55, 56, 72]. Here, a reduction in
prelimbic function in rodents- via lesion, functional inactivation, or
dopamine depletion- produces deficits in attentional set shifting
[134–137], blocking [55, 132, 138, 139], and overshadowing
[55, 56], similar to what is reported in schizophrenia
[81, 82, 87, 89–91, 140–142]. Indeed, people with schizophrenia
show a reduction in DLPFC function during attentional set shifting
and learned irrelevance [142–144], particularly those experiencing
first-episode psychosis [145].
On the other hand, the orbitofrontal cortex is important for

learning about the general structure of the environment, value-
based decision-making, and goal-directed behaviour [33, 146–
158]. This includes sensory-sensory associations, which extends to
learning about associations between neutral stimuli [127]. The
OFC is a functionally heterogenous structure divided into three
prominent divisions: the medial orbital (MO), ventral orbital (VO),
and lateral orbital (LO) cortices (with the LO overlapping with
portions of insular cortex that share similar projection profiles,
consistent with the human orbitofrontal cortex; e.g., [156, 159]). All
three of these regions exhibit differential projection profiles and
are thought to underlie distinct reinforcement-learning processes
[159, 160]. In terms of relevance for our model, the encoding of
sensory-sensory associations has been attributed to the LO. For
instance, we recently found that optogenetic inactivation of LO
reduced learning to associate neutral cues pairs [127], in a task
very similar to that recently found to be disrupted in people
experiencing hallucinations, including those with psychosis [28].
Further, reducing LO activity through lesions or inactivation in
rodents also leads to an enhancement of latent inhibition
[161, 162]. Such research demonstrates that OFC contributes in
important ways to learning about neutral information, and that
increases in OFC activity could produce an enhancement in
learning about neutral information, and deficits in latent inhibi-
tion. Importantly, this has been supported by some imaging
studies suggesting larger OFC volumes in people with schizo-
phrenia [163, 164], and increases in OFC activity during reinforce-
ment learning [112]. Finally, delusional ideation in healthy
individuals has been associated with enhanced connectivity
between the lateral OFC and visual cortex [165], where enhance-
ments in updating beliefs about ambiguous neutral stimuli is
correlated with the severity of positive symptoms in people
with schizophrenia [166]. These findings demonstrate that over-
activity in OFC circuits can enhance spurious associations about
neutral stimuli, resulting in a bias towards prior experiences more
heavily influencing future learning episodes, which may con-
tribute to hallucinations and delusions. However, despite the
extensive work looking at DLPFC and schizophrenia, there are
fewer studies looking at OFC activity (and even less that dissect
differential OFC subregions) in schizophrenia, particularly in the
context of reinforcement learning, which make it difficult to draw
concrete conclusions about the nature of OFC changes in
schizophrenia.
In terms of learning about rewards, recent data has implicated

the lateral hypothalamus as a novel structure that is critical to
reward learning, and opposing learning about neutral or irrelevant
information. The lateral hypothalamus has long been implicated in
responding to rewards [167–176], and recently this has been
extended to biasing learning towards the predictors of rewards
[128, 175]. For instance, optogenetic inhibition of GABAergic
neurons in the lateral hypothalamus decreases learning of reward-
predictive cues, whilst enhancing associations formed between
neutral cues and abolishing latent inhibition [128, 175]. Impor-
tantly, the lateral hypothalamus is a very diverse region and
contains many other neuronal populations that have been
implicated in motivated behaviour [177–184]. Thus, it is likely
that many neuronal populations within the lateral hypothalamus
contribute to these effects on learning. It may be that the
GABAergic neurons receive information from the many distinct
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populations within the lateral hypothalamus, which is then relayed
to other neural structures via the dense projections that
GABAergic neurons in this region send throughout the brain, to
influence ongoing learning and behaviour [175]. These data
implicate the lateral hypothalamus, and GABAergic neurons in
particular, as a critical arbitrator of learning about reward-
predictive information and neutral information, and are strikingly
similar to the paradoxical deficits we see in schizophrenia
[27, 29, 30, 81, 113]. That is, changes in hypothalamic activity in
people with schizophrenia has the capacity to change the balance
in learning about reward-paired and neutral stimuli, producing
both sides of the reinforcement learning deficits of the disorder.
However, there are very few imaging studies looking at
hypothalamic changes in schizophrenia, and those that have
looked at hypothalamus in people with schizophrenia have
elicited mixed results [185–187]. This is likely related to the
difficulty in imaging this structure, requiring manual quantification
[188, 189]. Given there are few studies investigating the potential
for hypothalamic dysfunction in schizophrenia, and no studies
that have looked at lateral hypothalamic dysfunction in the
context of the reinforcement-learning deficits seen in schizo-
phrenia, this is a particularly promising direction for future
research.
So then, how might we reconcile these region-specific roles

in the reinforcement learning deficit seen in schizophrenia
to put forward a new theoretical framework? The circuits
comprising dopamine neurons and the prelimbic cortex,
orbitofrontal cortex, and lateral hypothalamus are complex
[72, 131, 175, 176, 190]. However, from a functional perspective,
a particularly interesting locus for parallel and/or competitive
interactions between these systems could be the nucleus
accumbens in ventral striatum. The nucleus accumbens receives
dense projections from midbrain dopamine neurons, and is
generally considered a proxy for midbrain dopamine activity
[170, 191–196]. Indeed, most of the imaging data in
reinforcement-learning studies in the schizophrenia literature
look at activity in ventral striatum [82, 83, 113] (but see [31] for
evidence in changes in the dorsal striatum).
Importantly, prelimbic cortex, orbitofrontal cortex, and lateral

hypothalamus all send projections to different areas of the
accumbens [175, 197, 198], and the areas of the nucleus
accumbens that receive these projections appear to be function-
ally distinct [162, 199–201]. For example, the prelimbic cortex
sends dense projections to the medial portions of the nucleus
accumbens core (and to a lesser extent, shell) [198]. This same
portion of the nucleus accumbens has been implicated in the
attentional mechanisms of the blocking and overshadowing
effects, which are also dependent on the prelimbic cortex
[55, 56, 132, 138, 139, 202, 203]. The orbitofrontal cortex projects
to the nucleus accumbens core, though a more lateral region
from that receiving projections from prelimbic cortex [198]. A
reduction in activity in this portion of the ventral striatum
produces enhanced latent inhibition [162, 200], similarly to a loss
of function in OFC [161, 162]. Further, neurons in nucleus
accumbens core also reflect learning of neutral associations [187],
where this form of learning is known to be dependent on OFC
function also [127]. Finally, GABAergic neurons in the lateral
hypothalamus project to yet another region of the ventral
striatum, the shell of the nucleus accumbens, critical for
responding to specific cue-reward associations and latent
inhibition [200]. Thus, prelimbic, orbitofrontal, and lateral
hypothalamic areas all project to distinct regions of the nucleus
accumbens that appear to mirror the roles in learning subserved
by these afferent structures.
To put forward a new framework then, it may be the case that

the prediction error from VTA dopamine neurons terminating in
the nucleus accumbens serves to facilitate learned associations

in the form of synaptic plasticity [205, 212, 213], and these sites
receives a form of top-down modulation by afferents from
prelimbic, orbitofrontal, and lateral hypothalamic inputs. These
top-down afferents could compete to influence the balance of
learning between predictive, neutral, and irrelevant information.
In reference to schizophrenia, it may be that these circuits are
differentially weighted, such that the circuits comprising
orbitofrontal cortex and ventral striatum are overweighted
relative to prelimbic and hypothalamic striatal circuits, which
would produce an increase in learning about neutral and
irrelevant information, while reducing learning about reward-
predictive cues. This could occur in at least two ways: (1) the
inputs from the orbitofrontal, prelimbic, or lateral hypothalamic
region onto ventral striatum could be changed, or (2) the
bottom-up inputs from ventral tegmental area onto different
portions of ventral striatum could be differentially chan-
ged (Fig. 2). Overall, this view would be in line with clinical
evidence suggesting that dopamine receptor blockers, whilst
somewhat effective against positive symptoms, offer little to
ameliorate (and can even exacerbate) negative symptoms [214].
Specifically, by building on recent models [27], this could be
because dopamine receptor antagonists exacerbate the already
attenuated phasic dopamine responses in the ventral striatum
that underpin reward learning and are facilitated by prelimbic
cortex and hypothalamic inputs. On the other hand, this would
be effective in reducing phasic dopamine responses in over-
active circuits comprising OFC that contribute to the increase in
learning about neutral information, which are theorised to
underlie positive symptoms. In the below section, we discuss the
research that is needed to investigate these possibilities. If our
hypothesis is supported by future work, this would mean that
pharmacotherapies targeting dopamine need to be designed to
modulate dopamine differentially in distinct circuits in order to
combat both positive and negative symptoms of the disorder
(but see promising effects of deep brain stimulation in
dopamine circuits, which may influence dopamine circuits
through multiple mechanisms; [215]).

A “CALL TO ACTION”: THE NEED FOR STUDIES USING
PRECLINICAL MODELS OF SCHIZOPHRENIA IN THE CONTEXT
OF REINFORCEMENT LEARNING
Preclinical models of schizophrenia are particularly useful for
studying the neural underpinnings of particular reinforcement-
learning tasks and how a change in particular circuits could
produce learning deficits that mirror what we see in this disorder.
Indeed, in the 80 s and 90 s there was a concerted effort to use
reinforcement-learning tasks like latent inhibition and blocking in
tandem with drugs that target dopamine systems to mimic the
deficits seen in schizophrenia [51, 57–59, 216, 217]. This literature
served as a cornerstone for understanding the neural bases of the
early deficits seen in reinforcement learning in schizophrenia, and
were some of the first to provide support for the dopamine
hypothesis of schizophrenia [58, 217]. However, in the last few
decades there has been a shift in the field away from using
preclinical models in the context of reinforcement learning,
towards assays that assess emotionality-related behaviours, such
as those concerned with anxiety-like phenotypes and learned
helplessness or behavioural despair, and hyperactivity and
sensitivity to psychotomimetic drugs [218–220]. Those studies
that do assess learning-related phenomena typically implement
behavioural assays specific to working, reference and spatial
memory (e.g., Cheeseboard, Morris Water, Radial Arm, T- and Y-
mazes), many of which do not map onto tasks used in clinical
populations. In Fig. 3, we represent a breakdown of paradigms
used in the field, sampling for over 3000 preclinical studies using
rodent models of schizophrenia. This summary gives a general
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Fig. 2 A hypothesised framework of how distinct dopaminergic circuits could be altered in schizophrenia. People with schizophrenia
show a learning paradox, characterised by increases in learning about neutral or irrelevant information, and a decrease in learning
about reward-predictive information. This is associated with an increase in activity in ventral striatum to neutral or irrelevant
information, and a decrease in activity to reward-predictive information [27, 29, 30, 81, 113]. One way to account for this deficit is to
hypothesise that the inputs to the ventral striatum that regulate the balance between learning about reward-predictive, neural, and
irrelevant information, are changed. Specifically, we would argue that the paradox seen in schizophrenia is consistent with a
strengthening of orbitofrontal inputs to the ventral striatum, and a decrease in the inputs from prelimbic and lateral hypothalamic
circuits. The feasibility of such a model is supported by the separable nature of afferents coming from these regions to ventral striatum
[156, 159, 175, 197, 198]. Further research is necessary to test the validity of this model using preclinical studies in the context of
reinforcement learning.

Fig. 3 Graphical representation of behavioural domains commonly investigated in preclinical models of Schizophrenia. The
sensorimotor assay described as the prepulse inhibition test makes up the single most cited test in preclinical schizophrenia research.
Other behavioural assays include locomotor activity, and emotionality-related behaviour in the open field test, elevated plus maze,
forced swim test, sucrose preference test, tail suspension test and foot shock aversion test. Working, spatial and reference memory
contribute to the majority of behavioural assays designed to test memory that are cited by preclinical research, with the Morris water
maze, cheeseboard maze, radial arm maze, T maze, Y maze and novel object recognition the most commonly cited. Reinforcement-
learning tasks, which make the most contact with the clinical literature, comprise only 12% of citations, which includes latent inhibition,
reversal learning, reinforcement learning and intradimensional/extradimensional set-shift tasks that have been directly tested in people
with schizophrenia.
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representation of the state of the current field1. This clearly shows
that reinforcement-learning tasks, which can be directly replicated
in humans and are closely related to both the positive and
negative/cognitive symptoms of schizophrenia, fall behind in
relation to tasks that assess basic emotional reactivity.
Another challenge facing the literature is that it is difficult to

find a preclinical model of schizophrenia that exhibits changes
consistent with both the positive and negative/cognitive symp-
toms of schizophrenia. For example, most preclinical models of
schizophrenia in the early years were based on dopamine
agonists, like amphetamine, or glutamate (NMDA) antagonists,
like PCP and MK-801 [221–224]. Those that enhance dopamine
signalling found increases in attention or learning about irrelevant
information [217, 225–231]. On the other hand, those reducing
glutamate signalling tended to find changes consistent
with negative/cognitive symptoms, including reversal learning
[232–235], associative fear learning [236] and working memory
[237–239]. However, the advent of genetic neuroscience has the
potential to provide models that more closely mimic the human
disorder, which may prove to show deficits consistent with both
sides of the learning paradox seen in people with schizophrenia.
For example, there is now a rodent model of the 22q11.2 deletion
syndrome, considered to be the strongest copy number variant
occurring in the human population that is directly linked to
schizophrenia, accounting for 1 in 100 cases [240]. People with the
22q11.2 deletion show significant deficits in learning consistent
with schizophrenia, including those consistent with changes in
predictive coding, working memory, reward processing, and pre-

pulse inhibition, some of which has now been replicated in the
22q11.2 rodent model [241, 242]. While early days, models like the
2211.2 deletion could be used in combination with emerging tools
that can exert specific control over neuronal populations to test
some of the prediction outlined in our framework (Fig. 2),
discussed below.

NEW TOOLS AND APPROACHES FOR INVESTIGATING
SCHIZOPHRENIA
Pharmacological studies have been invaluable in schizophrenia
research. However, they are limited by the fact that pharmaco-
logical agents alter dopamine signalling over extended timescales,
and as a result, cannot directly be linked to specific patterns of
neuron activity [118, 243, 244]. However, the optogenetic
revolution now affords manipulation of particular neuronal
populations and their projections to distinct regions of the brain
with millisecond temporal resolution [243, 244]. The importance of
this development cannot be overstated. For example, the use of
transgenic rodents expressing Cre recombinase under the control
of the tyrosine hydroxylase (TH-Cre+) or glutamate decarboxylase
(GAD-Cre+) promoter, allows for the Cre-dependent expression of
opsins such as channelrhodopsin-2 (ChR2) or halorhodopsin
(NpHR) in dopamine or GABA neurons, respectively
[175, 211, 245]. The expression of ChR2 and NpHR in these rats
would allow for the ability to activate and inhibit, respectively,
dopamine or GABA neurons with millisecond resolution in
behaving rodents [118, 243, 244, 246, 247]. Importantly, the Cre-
dependent expression of these opsins in the cell body will also
travel in the anterograde direction along the axons of the cell
body, reaching the afferent terminals of the region receiving those
afferents [243]. This allows inhibition of downstream terminals
while leaving upstream neuronal cell bodies intact (Fig. 4) [245].
Cell-type specific optogenetics is a particularly useful tool in the
context of schizophrenia, as it allows for targeting of particular
dopaminergic circuits that underlie different aspects of reinforce-
ment learning, which could elucidate the ways in which these
circuits are likely to be affected in the disorder. Whilst there are
technical challenges yet to be overcome before optogenetics are

Fig. 4 New genetic tools facilitate circuit-specific manipulation and recording of dopamine activity and related circuits in vivo. The
advent of optical methods for manipulating and visualising cell-type specific neuronal activity have revolutionised behavioural neuroscience
and provide critical means with which to record and manipulate activity in specific dopamine circuits. This paves the way to investigate (1)
how different dopamine circuits contribute in unique ways to associative learning, and (2) how specific dopamine circuits in rodent models of
schizophrenia may be altered, contributing to the learning paradox seen in the disorder. For instance, one way to test the hypothesis that the
inputs to NaCC from the prelimbic cortex are weakened in schizophrenia, would be to inhibit prelimbic terminals in NAcc and determine the
resultant effect on attentional related process. One could then compare the phenotype produced by such manipulation to that of
schizophrenia to elucidate neural substrates underpinning learning deficits. Abbreviations: LH Lateral Hypothalamus, NAcc Nucleus
Accumbens, OFC Orbital Frontal Cortex, PL Prelimbic Cortex, VTA Ventral Tegmental Area.

1(A Web of Science indexed search was performed using the following
keywords: “Schizophrenia AND/OR Open Field Test, Elevated Plus
Maze, Forced Swim Test, Morris Water Maze, Cheeseboard Maze,
Radial Arm Maze, T Maze, Y Maze, PPI, Sucrose Preference Test, Tail
Suspension Test, Novel Object Recognition, Foot Shock, ID/ED, Latent
Inhibition, Reversal Learning, Conditioned Place Preference,
Reinforcement Learning”. Keywords “Rat OR Mice” were used to
exclude clinical studies. Only original manuscripts were considered,
reviews were excluded from the search).
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applied for therapeutic purposes in the clinic [248], advances for
tracing neural connections in humans (i.e., diffusion tensor
imaging; [249]), provides a parallel in which disrupted circuits
identified in the clinic can be probed using optogenetics in animal
models. For instance, endophenotypes commonly observed in
schizophrenia patients could be precisely replicated in rodents,
and tested to determine if aberrant changes in neural circuits play
a causal role in specific symptoms [250, 251]. These changes could
then be used as biomarkers in preclinical drug screening to
determine the efficacy of novel therapeutics, which could rely on
genetic approaches more amenable to clinical trials, like Designer
Receptors Exclusively Activated by Designer Drugs (DREADDs)
[250–252].
Similar optical approaches can be used to image activity in

particular neuronal populations, or the image release of particular
neuro-modulatory chemicals in vivo at high spatiotemporal
resolution [245]. For example, fibre photometry, or single-
photon imaging using miniscopes, can be used to image calcium
activity in dopamine neurons. Specifically, injection of either a Cre-
dependent AAV carrying the calcium sensory GCaMP into a TH-Cre
rat can facilitate imaging of activity in dopamine neurons
[245, 253]. Further, the very recent development of several
genetically encoded dopamine sensors [e.g., dLight, G-protein-
coupled receptor-activation-based (GRAB) DA] enables rapid
optical recording of dopamine dynamics without the use of
transgenic rodents [254–256]. This may be particularly advanta-
geous for investigating changes in dopamine signalling seen in
genetic models of schizophrenia that are not usually founded on a
Cre line and therefore not as easily used in combination with Cre-
dependent optogenetic manipulation and calcium imaging of
dopamine neurons. While dopamine sensors do not facilitate
imaging of projection-specific dopamine release itself, it can also
be used to detect physiological relevant dopamine transients
caused by optogenetic manipulation of particular terminals, or
adjacent to terminals that have been tagged by viral vectors [254].
These techniques constitute a veritable arsenal for investigating
how activity in dopaminergic circuits influences reinforcement
learning, and how these dynamics may be changed in preclinical
models of schizophrenia.

CONCLUSIONS AND REMAINING QUESTIONS
Recent evidence has changed the way we think about the
dopamine prediction error from a functional perspective
[33, 34, 39–43, 118, 257]. We now know that the dopamine error
acts as a teaching signal to instruct the development of learned
associations in many different contexts not traditionally envi-
sioned by theories of dopamine function, including learning about
neutral information. Accordingly, we may now be able to garner a
better understanding of how dysfunction in specific dopamine
circuits could contribute to the reinforcement learning paradox
seen in people with schizophrenia. Here, we argue that this
paradox can be accounted for by an imbalance in the circuits that
utilise the dopamine prediction error signal in the nucleus
accumbens to stamp in distinct learned associations. We
hypothesise that circuits comprising orbitofrontal modulation of
nucleus accumbens are strengthened, heightening the develop-
ment of associations between neutral information. On the other
hand, we argue that prelimbic and hypothalamic inputs to the
nucleus accumbens are compromised relative to orbitofrontal
inputs, reducing the ability of people with schizophrenia to
modulate attention and learning towards stimuli in the environ-
ment that are the best predictors of outcomes. There are many
questions that remain for this theoretical model. For example, in
the current manuscript, we have focussed on the potential
contribution of phasic dopamine signals to the deficits in
schizophrenia. However, levels of tonic dopamine play integral
roles in general motivation and decision making, and are in some

cases distinct (or modulatory) to the phasic error signal [258–260].
Thus, future discussions of how particular dopamine circuits
contribute to the reinforcement-learning deficits seen in schizo-
phrenia should comprise discussion of potential changes in tonic
dopamine function. In addition, there is evidence for dysfunction
in other regions of the brain seen in schizophrenia than those
discussed here. For example, studies have shown that function is
compromised in the ventromedial prefrontal cortex of people with
schizophrenia (vmPFC; considered analogous to infralimbic cortex
in the rat [131, 132, 261]). This region also sends dense projections
to the nucleus accumbens shell [198], and plays important roles in
reinforcement learning, which may suggest an integral role in the
deficits seen in schizophrenia and our framework presented here.
Recent technological advances have granted new avenues for
investigating cell-type specific activity in cell bodies and their
projections. By using these techniques, we can now explore how
projection-specific activity contributes to learning deficits seen in
animal models of schizophrenia. Importantly, these techniques
will help identify circuit-specific biomarkers of the disorder not
previously envisioned by current models, which could be used in
preclinical drug screening. Ultimately, this approach could pave
the way for more novel therapeutics targeting dopamine activity
that could prove efficacious for both positive and negative/
cognitive symptoms.
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